Coverings and matchings in r-partite hypergraphs
نویسندگان
چکیده
Ryser’s conjecture postulates that, for r-partite hypergraphs, τ ≤ (r − 1)ν where τ is the covering number of the hypergraph and ν is the matching number. Although this conjecture has been open since the 1960s, researchers have resolved it for special cases such as for intersecting hypergraphs where r ≤ 5. In this paper, we prove several results pertaining to matchings and coverings in r-partite intersecting hypergraphs. First, we prove that finding a minimum cardinality vertex cover for an r-partite intersecting hypergraph is NP-hard. Second, we note Ryser’s conjecture for intersecting hypergraphs is easily resolved if a given hypergraph does not contain a particular sub-hypergraph, which we call a tornado. We prove several bounds on the covering number of tornados. Finally, we prove the integrality gap for the standard integer linear programming formulation of the maximum cardinality r-partite hypergraph matching problem is at least r − k where k is the smallest positive integer such that r − k is a prime power.
منابع مشابه
Matchings and Tilings in Hypergraphs
We consider two extremal problems in hypergraphs. First, given k ≥ 3 and k-partite k-uniform hypergraphs, as a generalization of graph (k = 2) matchings, we determine the partite minimum codegree threshold for matchings with at most one vertex left in each part, thereby answering a problem asked by Rödl and Ruciński. We further improve the partite minimum codegree conditions to sum of all k par...
متن کاملPerfect matchings in 3-partite 3-uniform hypergraphs
Let H be a 3-partite 3-uniform hypergraph with each partition class of size n, that is, a 3-uniform hypergraph such that every edge intersects every partition class in exactly one vertex. We determine the Dirac-type vertex degree thresholds for perfect matchings in 3-partite 3-uniform hypergraphs.
متن کاملPerfect Fractional Matchings in $k$-Out Hypergraphs
Extending the notion of (random) k-out graphs, we consider when the k-out hypergraph is likely to have a perfect fractional matching. In particular, we show that for each r there is a k = k(r) such that the k-out r-uniform hypergraph on n vertices has a perfect fractional matching with high probability (i.e., with probability tending to 1 as n → ∞) and prove an analogous result for r-uniform r-...
متن کاملApproximate Counting of Matchings in (3, 3)-Hypergraphs
We design a fully polynomial time approximation scheme (FPTAS) for counting the number of matchings (packings) in arbitrary 3-uniform hypergraphs of maximum degree three, referred to as (3, 3)hypergraphs. It is the first polynomial time approximation scheme for that problem, which includes also, as a special case, the 3D Matching counting problem for 3-partite (3, 3)-hypergraphs. The proof tech...
متن کاملPartitions of Graphs into Coverings and Hypergraphs into Transversals
A covering of a multigraph G is a subset of edges which meet ail vertices of G. Partitions of the edges of G into coverings Ci, C2,..., Ck are considered. In particular we examine how close the cardinalities of thèse coverings may be. A resuit concerning matchings is extended to the décomposition into coverings. Finally thèse considérations are generalized to the décompositions of the vertices ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Networks
دوره 59 شماره
صفحات -
تاریخ انتشار 2012